Comparison of adsorption affinity of polyacrylic acid for surfaces of mixed silica–alumina

نویسندگان

  • Małgorzata Wiśniewska
  • Teresa Urban
  • Elżbieta Grządka
  • Vladimir I. Zarko
  • Vladimir M. Gun’ko
چکیده

The influence of solution pH (in the range 3-9) on the adsorption of polyacrylic acid (PAA) on the mixed silica-alumina surface (SA-3: SiO2 97 %-Al2O3 3 % and SA-96: SiO2 4 %-Al2O3 96 %) was investigated. The following methods were applied in experiments: spectrophotometry, viscosimetry, potentiometric titration, and microelectrophoresis, which enable determination of adsorbed amount of the polymer, thickness of its adsorption layers, surface charge density, and zeta potential of solid particles in the presence and absence of PAA, respectively. The obtained results indicate that rise of solution pH causes the decrease of PAA adsorption and the increase of its adsorption layer thickness on surfaces of both solids. Moreover, significantly higher adsorption of polyacrylic acid was obtained on the SA-96 surface. This is a result of more favorable electrostatic interactions occurring between the adsorbing polymer chains and the SA-96 surface and formation of a greater number of adsorbate-adsorbent connections through hydrogen bridges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Approach for Removal of Total Hardness ( Ca2+, Mg2+ ) from Water Using Commercial Polyacrylic Acid Hydrogel Beads, Study and Application

Adsorption and water treatment of Ca (II) and Mg (II) hardness were investigated via adsorption of metal ions onto commercial polyacrylic acid hydrogel beads as a novel sorbent for metal ions (Ca2+, Mg2+) removal and water treatment. Batch equilibrium technique was carried out under the influence of solution pH, contact time, sorbent dosage, initial metal concentration and...

متن کامل

New Approach for Removal of Total Hardness ( Ca2+, Mg2+ ) from Water Using Commercial Polyacrylic Acid Hydrogel Beads, Study and Application

Adsorption and water treatment of Ca (II) and Mg (II) hardness were investigated via adsorption of metal ions onto commercial polyacrylic acid hydrogel beads as a novel sorbent for metal ions (Ca2+, Mg2+) removal and water treatment. Batch equilibrium technique was carried out under the influence of solution pH, contact time, sorbent dosage, initial metal concentration and...

متن کامل

Removal of Lead from Aqueous Solutions by Polyacrylic Acid-Bentonite Composite: Batch and Column Studies

Shortage of water resources and deterioration of water quality have urged the need to develop new technologies for the removal of contaminants from water. Heavy metals produced by municipal and industrial activities are among the most toxic contaminants present in the natural and waste waters. Different methods have been developed for the elimination of heavy metals from water resources and ind...

متن کامل

Mineral mesopore effects on nitrogenous organic matter adsorption

The ‘‘mesopore protection hypothesis’’ [Chem. Geol. 114 (1994) 347; Geochim. Cosmochim. Acta 58 (1994) 1271] proposes that organic matter (OM) may be protected from enzymatic degradation by sequestration within mineral mesopores (2–50 nm diameter). This hypothesis is a leading, though controversial, theory in explaining both the preservation of some extremely labile OM compounds and observed co...

متن کامل

Removal of methylene blue using polyacrylic acid/ octavinyl polyhedral oligomeric silsesquioxane nanocomposite

Polyacrylic acid/ octavinyl polyhedral oligomeric silsesquioxane, nanocomposite hydrogel with 3-D network was synthesized via radical polymerization. Octavinyl polyhedral oligomeric silsesquioxane was used as crosslinker and nanofiller simultaneously in the preparation of the hydrogel. Hydrogel adsorption performance was determined by adsorption of methylene blue. The adsorption capacity was ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 292  شماره 

صفحات  -

تاریخ انتشار 2014